扩散模型

书生·筑梦2.0(Vchitect 2.0)

书生·筑梦2.0是一款由上海人工智能实验室开发的开源视频生成大模型,支持文本到视频和图像到视频的转换,生成高质量的2K分辨率视频内容。它具备灵活的宽高比选择、强大的超分辨率处理能力以及创新的视频评测框架,适用于广告、教育、影视等多个领域。

EasyPhoto

EasyPhoto是一个用于生成AI肖像的Webui UI插件,可以用来训练与你相关的数字化替身。

MultiTalk

MultiTalk是由中山大学深圳校区、美团和香港科技大学联合推出的音频驱动多人对话视频生成框架。它根据多声道音频输入、参考图像和文本提示,生成包含人物互动且口型与音频一致的视频。通过Label Rotary Position Embedding (L-RoPE) 方法解决多声道音频与人物绑定问题,并采用部分参数训练和多任务训练策略,保留基础模型的指令跟随能力。MultiTalk适用于卡通、歌唱及

InfiniteYou

InfiniteYou 是由字节跳动推出的基于扩散变换器的身份保持图像生成框架,通过 InfuseNet 注入身份特征,确保生成图像与输入图像的高度相似。结合多阶段训练策略,提升文本与图像对齐、图像质量和美学效果。支持插件化设计,兼容多种工具,适用于社交媒体、影视制作、广告营销等多个领域。

DreamVideo

DreamVideo-2是一款由复旦大学和阿里巴巴集团等机构共同开发的零样本视频生成框架,能够利用单一图像及界定框序列生成包含特定主题且具备精确运动轨迹的视频内容。其核心特性包括参考注意力机制、混合掩码参考注意力、重加权扩散损失以及基于二值掩码的运动控制模块,这些技术共同提升了主题表现力和运动控制精度。DreamVideo-2已在多个领域如娱乐、影视制作、广告营销、教育及新闻报道中展现出广泛应用前

DreaMoving

DreaMoving是一个基于扩散模型的人类视频生成框架,由阿里巴巴集团研究团队开发。该框架通过视频控制网络(Video ControlNet)和内容引导器(Content Guider)实现对人物动作和外观的精确控制,允许用户通过文本或图像提示生成个性化视频内容。其主要功能包括定制化视频生成、高度可控性、身份保持、多样化的输入方式以及易于使用的架构设计。DreaMoving广泛应用于影视制作、游

ELLA

ELLA(Efficient Large Language Model Adapter)是一种由腾讯研究人员开发的方法,旨在提升文本到图像生成模型的语义对齐能力。它通过引入时序感知语义连接器(TSC),动态提取预训练大型语言模型(LLM)中的时序依赖条件,从而提高模型对复杂文本提示的理解能力。ELLA无需重新训练,可以直接应用于预训练的LLM和U-Net模型,且能与现有模型和工具无缝集成,显著提升

MakeAnything

MakeAnything是由新加坡国立大学Show Lab团队开发的多领域程序性序列生成框架,能够根据文本或图像生成高质量的分步教程。它采用扩散变换器和ReCraft模型,支持从文本到过程和从图像到过程的双向生成。覆盖21个领域,包含超24,000个标注序列,具备良好的逻辑连贯性和视觉一致性,适用于教育、艺术、工艺传承及内容创作等多种场景。

LDGen

LDGen是一款结合大型语言模型与扩散模型的文本到图像生成工具,支持零样本多语言生成,提升图像质量和语义一致性。通过分层字幕优化、LLM对齐模块和跨模态精炼器,实现文本与图像的高效交互。实验表明其性能优于现有方法,适用于艺术创作、广告设计、影视制作等多个领域,具备高效、灵活和高质量的生成能力。

Dream

Dream-7B是由香港大学与华为诺亚方舟实验室联合开发的开源扩散模型,支持文本、数学和代码生成,具备双向上下文建模能力和灵活的生成控制。其在通用任务、数学推理和编程方面表现优异,适用于文本创作、数学求解、编程辅助及复杂任务规划等多种场景,提供高效且高质量的生成服务。