多模态

Motion Anything

Motion Anything 是一款由多所高校与企业联合研发的多模态运动生成框架,可基于文本、音乐或两者结合生成高质量人类运动。其核心在于基于注意力的掩码建模和跨模态对齐技术,实现对运动序列的精细控制与动态优先级调整。该工具支持影视动画、VR/AR、游戏开发、人机交互及教育等多个应用场景,并配套提供 Text-Music-Dance (TMD) 数据集,推动多模态运动生成技术的发展。

阿里妈妈·智造字

阿里妈妈·智造字,以研习古今造字的脉络,跨越历史长河,传承汉字基因,探寻中华深层审美规律。

Diff

Diff-Instruct是一种基于积分Kullback-Leibler散度的知识迁移方法,用于从预训练扩散模型中提取知识并指导生成模型的训练。它能够在无需额外数据的情况下,通过最小化IKL散度提升生成模型的性能。Diff-Instruct适用于多种场景,包括预训练扩散模型的蒸馏、现有GAN模型的优化以及视频生成等。

华为盘古AI大模型

华为的盘古ai大模型是华为云推出的一项人工智能技术。该大模型包含了多个领域的大型模型,包括自然语言处理(NLP)大模型、计算机视觉(CV)大模型、多模态大模型、预测大模型和科学计算大模型。

CAR

CAR(Certainty-based Adaptive Reasoning)是字节跳动联合复旦大学推出的自适应推理框架,旨在提升大型语言模型(LLM)和多模态大型语言模型(MLLM)的推理效率与准确性。该框架通过动态切换短答案和长形式推理,根据模型对答案的置信度(PPL)决定是否进行详细推理,从而在保证准确性的同时节省计算资源。CAR适用于视觉问答(VQA)、关键信息提取(KIE)等任务,在数学

SUPIR

SUPIR是一种创新的图像修复和画质增强方法,基于大规模生成模型StableDiffusion-XL(SDXL)和模型扩展技术。它通过深度学习和多模态方法实现低质量图像的高质量恢复,支持通过文本提示进行图像恢复的精细控制。SUPIR适用于多种应用场景,如老照片修复、模糊图像增强、噪点去除和色彩校正与增强。

VLM

VLM-R1 是由 Om AI Lab 开发的视觉语言模型,基于 Qwen2.5-VL 架构,结合强化学习优化技术,具备精准的指代表达理解和多模态处理能力。该模型适用于复杂场景下的视觉分析,支持自然语言指令定位图像目标,并在跨域数据中表现出良好的泛化能力。其应用场景涵盖智能交互、无障碍辅助、自动驾驶、医疗影像分析等多个领域。

Emu3

Emu3是一款由北京智源人工智能研究院开发的原生多模态世界模型,结合了多模态自回归技术和单一Transformer架构,能够在图像、视频和文本之间实现无缝转换。它不仅能够根据文本生成高质量图像,还能预测视频发展并理解图文内容,广泛应用于内容创作、广告营销、教育、娱乐等多个领域。

CogVideo

目前最大的通用领域文本生成视频预训练模型,含94亿参数。CogVideo将预训练文本到图像生成模型(CogView2)有效地利用到文本到视频生成模型,并使用了多帧率分层训练策略。

DiTCtrl

DiTCtrl是一种基于多模态扩散变换器架构的视频生成工具,能够利用多个文本提示生成连贯且高质量的视频内容,无需额外训练即可实现零样本多提示视频生成。它通过KV共享和潜在混合策略优化不同提示间的平滑过渡,同时在MPVBench基准上表现出色,适用于电影、游戏、广告及新闻等多个领域。