Transformer

SAM 2.1

SAM 2.1是一款由Meta开发的先进视觉分割模型,支持图像和视频的实时分割处理。其核心功能包括用户交互式分割、多对象跟踪、数据增强以及遮挡处理等。通过引入Transformer架构和流式记忆机制,SAM 2.1显著提升了对复杂场景的理解能力。该工具具有广泛的应用场景,涵盖内容创作、医疗影像分析、自动驾驶等多个领域。

UIGEN

一个基于 Qwen2.5-Coder-7B 模型微调的开源 UI 设计生成工具,能够根据用户输入的提示生成结构清晰且符合标准的 HTML 和 CSS 代码

CogView

CogView-3-Plus是智谱AI研发的AI文生图模型,采用Transformer架构替代传统的UNet,优化了扩散模型中的噪声规划。它能够根据用户指令生成高质量、高美学评分的图像,支持多种分辨率,并具有实时生成图像的能力。该模型已被集成到“智谱清言”APP中,并提供API服务,适用于艺术创作、游戏设计、广告制作等多个图像生成领域。

LatentLM

LatentLM是一款由微软与清华大学合作开发的多模态生成模型,能够统一处理文本、图像、音频等多种数据类型。它基于变分自编码器(VAE)和因果Transformer架构,支持自回归生成与跨模态信息共享,特别擅长图像生成、多模态语言模型及文本到语音合成等任务,其提出的σ-VAE进一步提升了模型的鲁棒性。

MeshPad

MeshPad 是一款基于草图输入的交互式 3D 网格生成与编辑工具,可将二维草图快速转化为高质量三维模型并支持实时修改。采用三角形序列表示和 Transformer 模型,实现高效、精准的网格生成与调整。通过推测性预测策略,提升计算效率,缩短编辑时间。生成的网格在精度上优于现有方法,适用于艺术设计、建筑设计和工业设计等多个领域。

Memory Layers

Memory Layers是一种由Meta研发的技术,通过引入可训练的键值查找机制,为模型增加了额外参数而不增加计算负担。它通过稀疏激活模式补充计算密集型前馈层,显著提升了模型在事实性任务中的表现,同时增强了模型的记忆与知识获取能力。Memory Layers的核心优势在于其高效的信息存储与检索机制,并且在问答、语言模型、推荐系统、知识图谱及对话系统等场景中具有广泛应用前景。

Bocha Semantic Reranker

Bocha Semantic Reranker是一款基于语义的排序模型,用于提升搜索和问答系统的准确性。它通过二次优化初步排序结果,评估查询与文档的语义相关性,并为文档分配语义得分。该工具支持多种语言模型,适用于搜索引擎优化、问答系统、推荐系统和智能客服等领域,旨在改善用户体验并提高系统效率。

MHA2MLA

MHA2MLA是一种由多所高校与研究机构联合开发的数据高效微调方法,基于多头潜在注意力机制(MLA)优化Transformer模型的推理效率。通过Partial-RoPE和低秩近似技术,显著减少KV缓存内存占用,同时保持模型性能稳定。仅需少量数据即可完成微调,适用于边缘设备、长文本处理及模型迁移等场景,具备高兼容性和低资源消耗优势。

CogView4

CogView4是一款由智谱推出的开源文生图模型,具有60亿参数,支持中英文输入与高分辨率图像生成。在DPG-Bench基准测试中表现优异,达到当前开源模型的领先水平。模型具备强大的语义理解能力,尤其在中文文字生成方面表现突出,适用于广告设计、教育、儿童绘本及电商等领域。其技术架构融合扩散模型与Transformer,并采用显存优化技术提升推理效率。

ProPainter

ProPainter是一款由南洋理工大学S-Lab团队开发的AI视频修复工具,其核心功能包括自动检测并移除视频中的不需要物体、修补缺失或损坏部分以及扩展视频视野。该工具采用了双域传播技术和蒙版引导的稀疏视频Transformer,旨在提供高质量的视频修复解决方案,广泛应用于电影后期制作、历史视频修复、社交媒体内容创作及虚拟现实等领域。 ---