跨模态

BAGEL

BAGEL是字节跳动开源的多模态基础模型,拥有140亿参数,采用混合变换器专家架构(MoT),通过两个独立编码器捕捉图像的像素级和语义级特征。它能够进行图像与文本融合理解、视频内容理解、文本到图像生成、图像编辑与修改、视频帧预测、三维场景理解与操作、世界导航以及跨模态检索等任务。BAGEL在多模态理解基准测试中表现优异,生成质量接近SD3,并适用于内容创作、三维场景生成、可视化学习和创意广告生成等

UniTok

UniTok是由字节跳动联合高校研发的统一视觉分词器,支持视觉生成与理解任务。其采用多码本量化技术,将视觉特征分割并独立量化,显著提升离散token的表示能力。在ImageNet上实现78.6%的零样本分类准确率,图像重建质量达0.38。可作为多模态大语言模型的视觉输入模块,广泛应用于图像生成、视觉问答、内容创作及跨模态检索等场景。