视觉生成

xAR

xAR是由字节跳动与约翰·霍普金斯大学联合研发的自回归视觉生成框架,采用“下一个X预测”和“噪声上下文学习”技术,提升视觉生成的准确性和效率。其支持多种预测单元,具备高性能生成能力,在ImageNet数据集上表现优异,适用于艺术创作、虚拟场景生成、老照片修复、视频内容生成及数据增强等多种应用场景。

Liquid

Liquid是由华中科技大学、字节跳动和香港大学联合开发的多模态生成框架,通过VQGAN将图像编码为离散视觉token并与文本共享词汇空间,使大型语言模型无需修改结构即可处理视觉任务。该框架降低训练成本,提升视觉生成与理解性能,并在多模态任务中表现出色。支持图像生成、视觉问答、多模态融合等应用,适用于创意设计、内容创作及智能交互等领域。

Unbounded

Unbounded是一款由谷歌与北卡罗来纳大学教堂山分校合作研发的无限人生模拟游戏,采用大型语言模型(LLM)和视觉生成模型,使玩家能够在开放世界中自由探索并引导角色互动,形成连贯的故事线。该工具具备实时动态生成游戏机制、角色个性化定制、视觉一致性维护等功能,同时适用于娱乐、教育、创意写作及心理治疗等多个领域。

PixelFlow

PixelFlow是由香港大学与Adobe联合开发的图像生成模型,支持在像素空间中直接生成高质量图像。其基于流匹配技术和多尺度生成策略,实现从低分辨率到高分辨率的逐步生成,有效降低计算成本。该模型在类别条件图像生成和文本到图像生成任务中表现优异,具备强大的语义理解和视觉表达能力。此外,PixelFlow采用端到端训练方式,支持多种ODE求解器,适用于艺术设计、内容创作、教育研究等多个领域。