自然语言处理
Verifier Engineering
Verifier Engineering是一种创新的后训练方法,通过搜索、验证和反馈三个阶段优化基础模型性能。它采用目标条件马尔可夫决策过程(GC-MDP),结合线性与树搜索算法,对模型输出进行动态调整。其验证器分类涵盖多种形式和粒度,并支持基于训练和推理的反馈方式。这项技术已在自然语言处理、代码生成、教育和内容安全等领域展现广泛潜力,成为提升模型鲁棒性和智能化水平的重要工具。
WebThinker
WebThinker是一款由多家科研机构联合开发的AI工具,旨在增强大型推理模型在复杂任务中的表现。它支持自主搜索、网页导航与实时报告生成,结合深度网页探索器和强化学习策略,提升信息获取与内容创作的效率与质量。适用于科学研究、数据分析、教育辅助等多种场景,显著增强了模型在知识密集型任务中的可靠性与实用性。
Agent K v1.0
Agent K v1.0 是一款端到端自主数据科学智能体,由华为诺亚方舟实验室与伦敦大学学院团队联合开发。该工具能够自动化处理数据科学生命周期中的各个环节,支持多模态数据处理,具备动态多步骤问题解决能力,并通过结构化推理和动态记忆管理实现自我学习与优化。Agent K v1.0 在Kaggle多模态挑战赛中表现优异,广泛应用于金融、医疗、零售、制造及客户服务等领域。