模型

GO

GO-1是智元机器人推出的首个通用具身基座模型,采用ViLLA架构,结合多模态大模型与混合专家系统,具备场景感知、动作理解和精细执行能力。支持小样本快速泛化、跨本体部署与持续进化,广泛应用于零售、制造、家庭及科研等领域,推动具身智能技术发展。

VideoJAM

VideoJAM是Meta开发的视频生成框架,旨在提升视频运动连贯性。通过联合学习外观与运动信息,在训练阶段同时预测像素和运动特征,并在推理阶段利用动态引导机制优化生成结果。该技术具备高度通用性,可适配多种视频生成模型,无需调整训练数据或模型结构,已在多项基准测试中表现优异,适用于影视、游戏、教育等多个领域。

Aicolors

AI Colors,人工智能生成界面配色方案。

Transfusion

Transfusion是由Meta公司开发的多模态AI模型,能够同时生成文本和图像,并支持图像编辑功能。该模型通过结合语言模型的下一个token预测和扩散模型,在单一变换器架构上处理混合模态数据。Transfusion在预训练阶段利用了大量的文本和图像数据,表现出强大的扩展性和优异的性能。其主要功能包括多模态生成、混合模态序列训练、高效的注意力机制、模态特定编码、图像压缩、高质量图像生成、文本生成

启元重症大模型

启元重症大模型是一款面向ICU环境的医疗人工智能系统,依托于腾讯的混元大模型架构,集成了庞大的医学知识库和先进的自然语言处理技术,能够快速生成病历、总结病情、提供诊疗建议等,大幅提升了重症医疗的服务质量和工作效率。其核心技术包括医学知识图谱构建、数据处理与分析、模型压缩优化以及临床逻辑推理能力,适用于多种应用场景如ICU监护、智能辅助诊疗、病历自动化生成等。

ReasonIR

ReasonIR-8B 是由 Meta AI 开发的推理密集型检索模型,基于 LLaMA3.1-8B 训练,采用双编码器架构,提升复杂查询处理能力。结合合成数据生成工具,增强模型在长上下文和抽象问题中的表现。在多个基准测试中表现优异,适用于问答系统、教育、企业知识管理和科研等领域。

Loopy AI

字节跳动和浙江大学联合开发的音频驱动的AI视频生成模型,能够将静态图像转化为动态视频,实现音频与面部表情、头部动作的完美同步。

Qwen2

Qwen2是由阿里云通义千问团队开发的大型语言模型系列,涵盖从0.5B到72B的不同规模版本。该系列模型在自然语言理解、代码编写、数学解题及多语言处理方面表现出色,尤其在Qwen2-72B模型上,其性能已超过Meta的Llama-3-70B。Qwen2支持最长128K tokens的上下文长度,并已在Hugging Face和ModelScope平台上开源。 ---

Audio2Photoreal

从音频生成全身逼真的虚拟人物形象。它可以从多人对话中语音中生成与对话相对应的逼真面部表情、完整身体和手势动作。

PromptLoop

Promptloop 是一个帮助您编写更好文本的网站。它使用人工智能来生成改进您的写作风格、语法、词汇和内容的建议。