架构

ENEL

ENEL是一种无编码器架构的3D大型多模态模型,通过直接处理点云数据并结合LLM实现高效语义编码与几何结构理解。其核心技术包括LLM嵌入的语义编码和分层几何聚合策略,在3D对象分类、字幕生成和视觉问答等任务中表现出色,性能接近更大规模模型。该模型适用于工业自动化、虚拟现实及复杂3D结构分析等领域。

万相首尾帧模型

万相首尾帧模型(Wan2.1-FLF2V-14B)是一款开源视频生成工具,基于DiT架构和交叉注意力机制,可根据用户提供的首帧和尾帧图像生成高质量、流畅的过渡视频。支持多种风格和特效,适用于创意视频制作、影视特效、广告营销等多个场景。模型具备细节复刻、动作自然、指令控制等功能,且提供GitHub和HuggingFace开源资源供用户使用。

OpenMusic

OpenMusic是一款基于QA-MDT技术的文生音乐工具,支持从文本生成高质量音乐作品,具备质量感知训练、多样化风格生成及复杂推理能力。它广泛应用于音乐制作、多媒体内容创作、音乐教育等领域,同时提供音频编辑与处理功能,旨在提升音乐创作效率和质量。

SAM 2.1

SAM 2.1是一款由Meta开发的先进视觉分割模型,支持图像和视频的实时分割处理。其核心功能包括用户交互式分割、多对象跟踪、数据增强以及遮挡处理等。通过引入Transformer架构和流式记忆机制,SAM 2.1显著提升了对复杂场景的理解能力。该工具具有广泛的应用场景,涵盖内容创作、医疗影像分析、自动驾驶等多个领域。

MiniMind

MiniMind 是一款轻量级开源语言模型项目,具备极低的训练成本和高效的训练流程。其最小模型仅需 25.8M 参数,可在普通 GPU 上运行,支持多模态能力,如视觉语言模型 MiniMind-V。项目提供完整的训练代码,涵盖预训练、微调、LoRA、DPO 和模型蒸馏,兼容主流框架,适合初学者和开发者快速上手并应用于多个领域。

ModernBERT

ModernBERT是一种基于Transformer架构的新型编码器-only模型,是对经典BERT模型的深度优化版本。它通过在大规模数据集上的训练,提升了对长上下文的理解能力,并在信息检索、文本分类、实体识别等多个自然语言处理任务中展现出卓越性能。此外,ModernBERT在速度和资源效率方面均有显著改进,适合应用于多个领域。

Hunyuan

Hunyuan-Large是一款由腾讯开发的大规模混合专家(MoE)模型,以其庞大的参数量成为当前参数规模最大的开源MoE模型之一。该模型基于Transformer架构,擅长处理长文本任务,同时在多语言自然语言处理、代码生成以及数学运算等领域展现出色性能。通过合成数据增强训练与创新的注意力机制,Hunyuan-Large实现了高效的推理吞吐量,并广泛应用于内容创作、教育辅助、知识问答及数据分析等多

Jan.ai

ChatGPT 的开源、托管替代品,jan.ai可在您的计算机上100%离线运行。

MCP

MCP(Model Context Protocol)是一项由Anthropic开源的协议,专注于实现大型语言模型(LLM)与外部数据源和工具的无缝集成。其核心功能包括数据集成、工具集成、模板化交互、安全性、开发者支持及上下文维护,支持双向数据流并内置安全机制。MCP适用于AI驱动的集成开发环境、增强聊天界面、自定义AI工作流、ERP系统集成及CRM系统增强等场景。

日日新SenseNova V6

日日新SenseNova V6是商汤科技推出的第六代多模态大模型,基于6000亿参数架构,支持文本、图像、视频的原生融合。具备强推理、长记忆与情感表达能力,适用于视频分析、教育辅导、智能客服、具身智能等多个领域,提升交互体验与内容处理效率。