机器学习
Qwen3 Embedding
Qwen3 Embedding 是基于 Qwen3 基础模型开发的文本表征、检索与排序专用模型,支持 119 种语言,参数规模从 0.6B 到 8B。它能够精准捕捉文本语义,支持多语言处理、高效检索和语义相关性排序,并可通过个性化优化提升用户体验。在 MTEB 等任务中表现优异,适用于智能搜索、推荐系统、问答系统和教育领域等场景。
Project DIGITS
Project DIGITS 是 NVIDIA 推出的高性能 AI 计算设备,基于 Grace Blackwell 架构,配备 GB10 Superchip,提供高达 1 万万亿次的 AI 计算能力,支持运行 2000 亿参数的大模型。其具备 128GB 统一内存和 4TB NVMe 存储,支持本地开发与云端部署,适配多种 AI 应用场景,如研究、数据分析、教育及医疗等。
The AI Scientist
The AI Scientist-v2 是一个端到端的 AI 系统,能够自主完成从提出科学假设到撰写论文的全流程科研任务。它采用基于代理的树搜索方法,提高科学探索效率,并结合视觉-语言模型优化内容质量。该系统已成功生成并通过同行评审的 AI 论文,标志着 AI 在科学研究领域的重大突破。适用于科研自动化、机器学习、跨学科研究及教育等多个场景。
Paper2Code
Paper2Code是一款由韩国科学技术院与DeepAuto.ai合作开发的AI工具,基于多Agent大语言模型,能将机器学习论文自动转化为可运行的代码仓库。它通过规划、分析和代码生成三个阶段,确保代码结构清晰且忠实于原论文内容。该工具显著提升了科研复现效率,适用于研究、教学、工业等多个领域,具有高度实用性和准确性。
