推理

rStar

rStar-Math是由微软亚洲研究院研发的数学推理工具,采用蒙特卡洛树搜索(MCTS)驱动的深度思考机制,使小型语言模型在数学推理方面达到或超越大型模型水平。通过代码增强的推理轨迹生成、过程偏好模型(PPM)训练和四轮自我进化策略,显著提升了模型的准确率与自我反思能力。该工具已在多个数学基准测试中取得优异成绩,适用于教育、科研、金融、工程和数据分析等多个领域。

Amazon Bedrock

Amazon Bedrock是一款由AWS推出的完全托管型AI服务平台,集成了多家顶级AI公司的基础模型,支持企业通过单一API访问高性能模型。它提供了从基础模型接入、微调到代理构建的一系列功能,包括检索增强生成(RAG)、自动推理检查及多Agent协作等特性。此外,其模型蒸馏技术能够有效提升效率并降低运行成本,广泛适用于文本生成、虚拟助手、图像生成等多种应用场景。

讯飞星火认知大模型

讯飞星火认知大模型是由科大讯飞发布的大模型,具有7大核心能力,包括文本生成、语言理解、知识问答、逻辑推理、数学能力、代码能力、多模交互,对标ChatGPT。

Talker

Talker-Reasoner是一种结合了直觉与逻辑推理能力的双模块AI代理架构,由谷歌DeepMind研发。它通过Talker模块快速生成自然语言回应,以及Reasoner模块执行复杂的逻辑推理和规划,实现了高效的任务处理和自然的人机交互。该架构支持多步推理、信念状态管理及上下文感知,适用于客户服务、健康管理、教育辅导等多个领域。

风声雨声

风声雨声是一款基于 GPT-3.5 的高质量翻译服务,能够适应各种语言和语境,拥有超强的上下文理解能力,实际的翻译效果远超 Google、DeepL 等同类型服务。

夸克灵知大模型

夸克灵知大模型是一款具备高阶推理能力的智能学习工具,专为不同阶段的学习者设计。它提供详尽的题目解析、启发式教学及实时互动功能,涵盖K12教育、高等教育及成人教育等多个领域,助力用户全面提升学习效率和理解力。

Arctic

Arctic是一款由云计算公司Snowflake的AI研究团队开发的高效且开源的企业级大型语言模型,拥有480亿参数。该模型采用混合专家模型(MoE)架构,结合了密集变换器(Dense Transformer)和128个专家的特点。Arctic在成本效益、训练效率和推理效率方面具有显著优势,特别适用于企业任务,例如SQL生成、编程和指令遵循。模型基于Apache 2.0许可发布,用户可以自由使用和

TPO

TPO(Test-Time Preference Optimization)是一种在推理阶段优化语言模型输出的框架,通过将奖励模型反馈转化为文本形式,实现对模型输出的动态调整。该方法无需更新模型参数,即可提升模型在多个基准测试中的性能,尤其在指令遵循、偏好对齐、安全性和数学推理等方面效果显著。TPO具备高效、轻量、可扩展的特点,适用于多种实际应用场景。

LocAgent

LocAgent是一款由多所高校联合开发的代码定位工具,通过构建代码库的图结构并结合大语言模型进行多跳推理,帮助开发者快速找到需修改的代码片段。支持多种开发任务,如错误修复、功能添加和性能优化,具备高效的搜索与定位能力,适用于大规模代码维护场景。

SWEET

SWEET-RL是Meta开发的多轮强化学习框架,专为提升大型语言模型在协作推理任务中的表现而设计。通过引入训练时的额外信息优化“批评者”模型,实现精准的信用分配与策略优化。在ColBench基准测试中,其在后端编程和前端设计任务中表现出色,成功率提升6%。适用于文本校对、社交媒体审核、广告合规等多种场景,具备高度的通用性和适应性。