量化

MaxKB

MaxKB是一款开源AI知识库问答系统,支持文档上传、在线文档爬取、文本自动拆分和向量化。它兼容多种大语言模型,包括本地私有和公共模型,提供灵活的工作流引擎和多格式文档支持。MaxKB采用先进的技术如大型预训练语言模型、自动化文档处理、检索增强生成(RAG)技术和向量数据库技术,适用于企业内部知识库、客户服务、教育与培训等多个领域。

Nemotron

Nemotron-Mini-4B-Instruct是一款由英伟达开发的小型开源语言模型,针对角色扮演、检索增强生成(RAG)及函数调用任务进行了优化。模型基于Transformer架构,利用蒸馏、剪枝和量化技术提升运行效率与设备端适配能力,适用于实时交互场景,如游戏NPC对话或虚拟助手交互。其快速响应特性使其在客户服务、教育软件及内容创作领域也展现出巨大潜力。

KTransformers

KTransformers是一款由清华大学KVCache.AI团队与趋境科技联合开发的开源工具,用于提升大语言模型的推理性能并降低硬件门槛。它支持在24GB显卡上运行671B参数模型,利用MoE架构和异构计算策略实现高效推理,预处理速度达286 tokens/s,推理速度达14 tokens/s。项目提供灵活的模板框架,兼容多种模型,并通过量化和优化技术减少存储需求,适合个人、企业及研究场景使用。

SVDQuant

SVDQuant是一种由MIT研究团队开发的后训练量化技术,专注于通过4位量化减少扩散模型的内存占用和推理延迟。它利用低秩分支技术吸收量化异常值,支持DiT和UNet架构,并能无缝集成LoRAs。SVDQuant适用于移动设备、个人电脑、云计算平台及低功耗设备,可大幅提升图像生成和处理效率。

猎户星空大模型

百亿级模型SOTA,支持 32万 tokens 的上下文能够一次性接受并处理约 45 万汉字的输入内容准确提取关键信息。

TradingAgents

TradingAgents是由加州大学洛杉矶分校与麻省理工学院联合开发的多代理LLM金融交易框架,整合多种专业角色的AI代理,通过辩论与对话进行交易决策。该系统支持多类型市场数据分析,具备风险控制、动态调整与高可解释性,适用于量化交易、资产管理、个人投资等多个场景,显著提升交易效率与透明度。

FunGPT

FunGPT 是一款基于 InternLM2.5 大模型开发的开源工具,专注于情感互动与情绪调节。它包含“甜言蜜语模式”和“犀利怼语模式”,分别用于提升用户情绪和释放压力。项目采用轻量化模型与 AWQ 量化技术,兼顾性能与效率。适用于创意启发、娱乐互动等多种场景,适合对情感交互感兴趣的开发者和用户。

Magic 1

Magic 1-For-1是由北京大学、Hedra Inc. 和 Nvidia 联合开发的高效视频生成模型,通过任务分解和扩散步骤蒸馏技术实现快速、高质量的视频生成。支持文本到图像和图像到视频两种模式,结合多模态输入提升语义一致性。采用模型量化技术降低资源消耗,适配消费级硬件。广泛应用于内容创作、影视制作、教育、VR/AR及广告等领域。

OmniAudio

OmniAudio-2.6B是一款专为边缘设备设计的高性能音频语言模型,具备语音识别、转录、问答、对话生成及内容创作等核心功能。其技术优势在于多模态架构的高效集成、稀疏性利用以及三阶段训练流程,支持FP16和Q4_K_M量化版本,确保在资源受限的环境下仍能稳定运行。OmniAudio-2.6B可应用于智能助手、车载系统、会议记录、教育和医疗等多个领域,为用户提供便捷、高效的语音交互体验。

PaliGemma 2

PaliGemma 2是一款由Google DeepMind研发的视觉语言模型(VLM),结合了SigLIP-So400m视觉编码器与Gemma 2语言模型,支持多种分辨率的图像处理。该模型具备强大的知识迁移能力和出色的学术任务表现,在OCR、音乐乐谱识别以及医学图像报告生成等方面实现了技术突破。它能够处理多模态任务,包括图像字幕生成、视觉推理等,并支持量化和CPU推理以提高计算效率。