扩散模型

MobileVD

MobileVD是Qualcomm AI Research团队开发的首个面向移动端优化的视频扩散模型,基于Stable Video Diffusion架构,通过降低帧分辨率、多尺度时间表示和剪枝技术,显著提升模型效率。其具备高效的去噪能力和低资源消耗,适用于短视频生成、视频编辑、游戏动画及互动视频等多种应用场景,为移动设备上的视频生成提供了强大支持。

iDP3

iDP3是一种基于自我中心3D视觉表征的改进型人形机器人运动策略,由斯坦福大学等机构联合开发。它摒弃了对精确相机校准和点云分割的需求,具备出色的视图、对象及场景泛化能力,可高效适应未知环境。此外,其优化的视觉编码器和扩散模型进一步提高了学习和推理性能,在家庭、工业、医疗、搜救及教育等领域具有广泛应用潜力。

Hyper

Hyper-SD是由字节跳动研究人员开发的高效图像合成框架,通过轨迹分割一致性蒸馏(TSCD)、人类反馈学习(ReFL)和分数蒸馏等技术,显著降低了扩散模型在多步推理过程中的计算成本。该框架在保持高图像质量的同时,大幅减少了推理步骤,实现了快速生成高分辨率图像,推动了生成式AI技术的发展。

GameNGen

GameNGen是谷歌推出的一款AI游戏引擎,它能够以每秒20帧的速度实时生成高质量的DOOM游戏画面,使大多数玩家难以分辨真假。该工具无需编程,简化了开发流程,同时具备高逼真度和交互式体验,为游戏创作提供了新的可能性。除了游戏开发,它还能应用于虚拟现实、自动驾驶等多个领域,具有广泛的应用前景。

Allegro

Allegro 是一款由 Rhymes AI 开发的文本到视频生成工具,可将描述性文本快速转化为高质量的动态视频内容。支持 720p 分辨率、15 FPS 帧率和最长 6 秒的视频输出,具有高时间一致性,适用于内容创作、广告营销、教育培训等多个领域,凭借先进的技术架构和强大的功能,成为视频生成领域的领先解决方案之一。

SaRA

SaRA是一种新型预训练扩散模型微调方法,通过重新激活预训练阶段未被充分使用的参数,有效提升模型的适应性和泛化能力。该方法支持核范数低秩稀疏训练,能够防止过拟合并优化模型性能,同时大幅降低计算资源需求。SaRA适用于多种应用场景,包括图像风格迁移、视频生成及下游数据集微调等,仅需少量代码调整即可实现高效微调。

VideoCrafter2

VideoCrafter2 是一款由腾讯AI实验室开发的视频生成模型,通过将视频生成过程分解为运动和外观两个部分,能够在缺乏高质量视频数据的情况下,利用低质量视频保持运动的一致性,同时使用高质量图像提升视觉质量。该工具支持文本到视频的转换,生成高质量、具有美学效果的视频,能够理解和组合复杂的概念,并模拟不同的艺术风格。

Diffusion Self

Diffusion Self-Distillation (DSD) 是一种基于预训练文本到图像扩散模型的零样本定制图像生成技术,通过自动生成数据集并微调模型,支持文本条件下的图像到图像转换任务。其核心在于利用生成图像网格与视觉语言模型筛选高质量配对数据集,实现无需人工干预的身份保持定制化图像生成。该技术广泛应用于艺术创作、游戏开发、影视制作、广告营销及个性化商品等领域。

DynamicFace

DynamicFace是由小红书团队开发的视频换脸技术,结合扩散模型与时间注意力机制,基于3D面部先验知识实现高质量、一致性的换脸效果。通过四种精细的面部条件分解和身份注入模块,确保换脸后的人脸在不同表情和姿态下保持一致性。该技术适用于视频与图像换脸,广泛应用于影视制作、虚拟现实、社交媒体等内容创作领域,具备高分辨率生成能力和良好的时间连贯性。

MCA

MCA-Ctrl是由中科院计算所与国科大联合开发的图像定制生成框架,通过引入SAGI和SALQ注意力控制策略及主体定位模块,提升图像生成质量与一致性。支持零样本图像生成,适用于主体特征保持、背景一致性维护等多种任务,广泛应用于数字内容创作、广告设计、艺术创作等领域。