扩散模型
Perception
Perception-as-Control是由阿里巴巴通义实验室开发的图像动画框架,支持对相机和物体运动的细粒度控制。它基于3D感知运动表示,结合U-Net架构的扩散模型,实现多种运动相关的视频合成任务,如运动生成、运动克隆、转移和编辑。通过三阶段训练策略,提升运动控制精度和稳定性,适用于影视、游戏、VR/AR、广告及教育等多个领域。
TryOffDiff
TryOffDiff是一种基于扩散模型的虚拟试穿技术,通过高保真服装重建实现从单张穿着者照片生成标准化服装图像的功能。它能够精确捕捉服装的形状、纹理和复杂图案,并在生成模型评估和高保真重建领域具有广泛应用潜力,包括电子商务、个性化推荐、时尚设计展示及虚拟时尚秀等场景。
DiffSensei
DiffSensei是一款由北京大学、上海AI实验室及南洋理工大学联合开发的漫画生成框架,它结合了基于扩散的图像生成技术和多模态大型语言模型(MLLM)。该工具能够根据用户提供的文本提示和角色图像,生成具有高精度和视觉吸引力的黑白漫画面板,支持多角色场景下的互动与布局调整。其核心技术包括掩码交叉注意力机制、对话布局编码以及MLLM作为特征适配器等,广泛应用于漫画创作、个性化内容生成、教育和培训等领
SongCreator
SongCreator是一款基于AI技术的音乐生成工具,由清华大学深圳国际研究生院与香港中文大学等机构联合开发。它采用双序列语言模型(DSLM)和注意力掩码策略,支持歌词到歌曲、歌词到声乐、伴奏到歌曲等多种音乐生成任务,并允许用户灵活调整生成内容的声学特性。SongCreator适用于音乐制作、教育、娱乐、内容创作等多个领域,为用户提供高效便捷的音乐解决方案。
PixelHacker
PixelHacker是一款由华中科技大学与VIVO AI Lab联合开发的图像修复模型,采用潜在类别引导机制,通过线性注意力实现结构与语义一致性的高质量修复。基于大规模数据集训练并经过多基准微调,支持多种图像类型与分辨率。适用于照片修复、对象移除、艺术创作、医学影像及文化保护等领域。