多模态

Awesome Chinese LLM

整理了开源的中文大语言模型(LLM),主要关注规模较小、可私有化部署且训练成本较低的模型,目前已收录了100多个相关资源。

狸谱

狸谱是一款集AI图像处理与互动创作于一体的多功能工具,提供“灵魂提取器”功能用于生成物体相关人设形象,同时拥有AI壁纸漫画创作、跑团剧情互动及自定义画风等功能。狸谱凭借其多模态大模型技术和丰富的应用场景,满足用户在娱乐、创意、教育等多个领域的多样化需求。

Luma Ray2

Luma Ray2 是 Luma AI 推出的视频生成模型,基于多模态架构,支持文本和图像输入,生成高质量、连贯的视频内容。相较前代,视频时长从 5 秒提升至 1 分钟,支持电影级运镜和逼真特效,适用于影视制作、广告、游戏动画及教育等多个领域。

MOFA

MOFA-Video是由腾讯AI实验室和东京大学研究人员开发的开源图像生成视频模型。该工具通过生成运动场适配器对图像进行动画处理,能够通过稀疏控制信号(如手动轨迹、面部关键点序列或音频)实现对视频生成过程中动作的精准控制。MOFA-Video支持零样本学习,能够将多种控制信号组合使用,生成复杂的动画效果,并能生成较长的视频片段。 ---

QVQ

QVQ是一个基于Qwen2-VL-72B的开源多模态推理模型,擅长处理文本、图像等多模态数据,具备强大的视觉理解和复杂问题解决能力。它在数学和科学领域的视觉推理任务中表现出色,但在实际应用中仍需解决语言切换、递归推理及图像细节关注等问题。QVQ可广泛应用于教育、自动驾驶、医疗图像分析、安全监控及客户服务等领域。

POINTS 1.5

POINTS 1.5 是腾讯微信开发的多模态大模型,基于LLaVA架构设计,包含视觉编码器、投影器和大型语言模型。它在复杂场景OCR、推理、关键信息提取、数学问题解析及图片翻译等方面表现突出,适用于票据识别、自动客服、新闻摘要、学术论文处理、旅游翻译和在线教育等多个领域。该模型通过高效的数据处理和特征融合技术,实现了跨模态任务的精准处理与高效输出。

LongDocURL

LongDocURL是一个由中国科学院自动化研究所和阿里巴巴联合发布的多模态长文档理解基准数据集,包含2,325组问答对,覆盖33,000页文档,涉及20个子任务。该数据集专注于评估AI模型在长文档理解、数值推理、跨元素定位及多样化任务中的性能,支持文本、图像和表格等多种模式,具有高质量和多样性的特点。

A2A

A2A是谷歌推出的首个智能体交互协议,旨在实现不同框架和供应商构建的AI智能体之间的高效协作。它支持多模态交互、长期任务管理和实时反馈,基于HTTP、JSON-RPC等标准设计,便于与现有系统集成。A2A具备安全性、可扩展性和用户体验协商能力,适用于企业流程自动化、跨平台客服、招聘优化、供应链协同和智能办公等多个场景。

DICE

DICE-Talk是由复旦大学与腾讯优图实验室联合开发的动态肖像生成框架,能够根据音频和参考图像生成具有情感表达的高质量视频。其核心在于情感与身份的解耦建模,结合情感关联增强和判别机制,确保生成内容的情感一致性与视觉质量。该工具支持多模态输入,具备良好的泛化能力和用户自定义功能,适用于数字人、影视制作、VR/AR、教育及心理健康等多个领域。

BALROG

BALROG是一款用于评估大型语言模型(LLMs)和视觉语言模型(VLMs)在游戏环境中推理能力的框架。它通过程序化生成的游戏环境,测试模型的规划、空间推理及探索能力,并提供细粒度的性能指标和公开排行榜,以促进AI技术的发展,适用于游戏AI开发、机器人技术、虚拟现实等多个领域。