多模态

Qihoo

Qihoo-T2X是由360 AI研究院与中山大学联合研发的高效多模态生成模型,基于代理标记化扩散 Transformer(PT-DiT)架构。该模型通过稀疏代理标记注意力机制显著降低计算复杂度,支持文本到图像、视频及多视图生成。具备高效生成能力和多任务适应性,适用于创意设计、视频制作、教育、游戏开发及广告等多个领域。

mPLUG

mPLUG-Owl3是一款由阿里巴巴开发的多模态AI模型,专注于理解和处理多图及长视频内容。该模型具备高推理效率和准确性,采用创新的Hyper Attention模块优化视觉与语言信息的融合。它已在多个基准测试中展现出卓越性能,并且其源代码和资源已公开,可供研究和应用。

BALROG

BALROG是一款用于评估大型语言模型(LLMs)和视觉语言模型(VLMs)在游戏环境中推理能力的框架。它通过程序化生成的游戏环境,测试模型的规划、空间推理及探索能力,并提供细粒度的性能指标和公开排行榜,以促进AI技术的发展,适用于游戏AI开发、机器人技术、虚拟现实等多个领域。

元镜

元镜是一款基于人机共生引擎的AI视频创作工具,支持从创意脚本生成到成片输出的全流程制作。具备多模态分镜设计、智能工作流和一键成片功能,提升视频创作效率与质量。适用于短视频、广告、教育、影视及政务宣传等多个领域,满足多样化内容生产需求。

Awesome Chinese LLM

整理了开源的中文大语言模型(LLM),主要关注规模较小、可私有化部署且训练成本较低的模型,目前已收录了100多个相关资源。

StarVector

StarVector 是一个开源多模态视觉语言模型,支持图像和文本到可编辑 SVG 文件的转换。采用多模态架构,结合图像编码与语言模型,生成结构紧凑、语义丰富的 SVG 内容。基于 SVG-Stack 数据集训练,适用于图标设计、艺术创作、数据可视化等多种场景,具备良好的性能和扩展性。

MUMU

MUMU是一种多模态图像生成模型,通过结合文本提示和参考图像来生成目标图像,提高生成的准确性和质量。该模型基于SDXL的预训练卷积UNet,并融合了视觉语言模型Idefics2的隐藏状态。MUMU能够在风格转换和角色一致性方面展现强大的泛化能力,同时在生成图像时能够很好地保留细节。主要功能包括多模态输入处理、风格转换、角色一致性、细节保留以及条件图像生成。

Steamer

Steamer-I2V 是百度 Steamer 团队推出的图像到视频生成模型,能够将静态图像转化为动态视频,具备卓越的视觉生成能力。该模型基于 Transformer 扩散架构,支持多模态输入,包括中文文本提示和参考图像,实现像素级的画面控制与电影级构图效果。在 VBench 评测中荣获榜首,生成高清 1080P 视频,优化时间一致性与运动规律性,适用于广告、影视、游戏开发和内容创作等多个领域。

NEXUS

NEXUS-O是一款由多家知名机构联合开发的多模态AI模型,能够处理音频、图像、视频和文本等多种输入,并以相应形式输出结果。它在视觉理解、音频问答、语音识别和翻译等方面表现出色,具备强大的跨模态对齐与交互能力。模型基于视觉语言预训练,结合高质量音频数据提升性能,并通过多模态任务联合训练增强泛化能力。适用于智能语音助手、视频会议、教育、智能驾驶、医疗健康等多个领域。

ACE

ACE是一款基于扩散Transformer架构的多模态图像生成与编辑工具,通过长上下文条件单元(LCU)和统一条件格式实现自然语言指令的理解与执行。它支持图像生成、编辑、多轮交互等多种任务,适用于艺术创作、媒体制作、广告设计、教育培训等多个领域,提供高效且灵活的视觉内容解决方案。